AC/27.06.2023/RS1

Sion (West), Mumbai – 400022.

Department of Chemistry

Program: M.Sc.

Course: Chemistry

M.Sc. Part – I or Post Graduate Diploma

Syllabus for M.Sc. Semester I & II

(With effective from 2023 – 2024)

Choice Based Credit System As per National Education Policy Proposed Credit Distribution Structure under NEP for Post Graduate Programme for Faculty of Science (Aided/Unaided/Self-financed) as mailed on 25th May 2023 by nodal officer.

Semester	Maj	or	Research	On Job	Researc	Credits/	Degree /	
			Methodolog	Trainin	h	Semester	Cumulative	
	Mandato	Elective	y	g or	Project		Credits	
	rv	S		Field				
	- 5	2		Project				
Ι	6 + 6 + 2	4	4 Credits			22 Credits	PG Diploma	
	= 14	Credits					44	
	Credits							
II	6 + 6 + 2	4		4		22 Credits		
	= 14	Credits		Credits				
	Credits							
Total of I & II	28	8	4 Credits	4		44		
	Credits	Credits		Credits		Credits		
III	6+6=12	4			6	22 Credits	PG Degree 88	
	Credits	Credits			Credits			
IV	6+6=12	4			6	22 Credits		
	Credits	Credits			Credits			
Total of III &	24	8			12	44		
IV	Credits	Credits			Credits	Credits		
Cumulative of	52	16	4 Credits	4	12	88		
four semesters	Credits	Credits		Credits	Credits	Credits		
(I+II+III+IV)								
Note: The above p	roposed struct	ture is for 22	2 Credits per ser	nester				

Semester Major Research Methodology On Job Training or Field Project Semestre brower Constitution Project	Proposed Credit Bifurcation Structure under NEP for Post Graduate Programme for Faculty of Science (Aided/Unaided/Self-financed) as mailed on 25 th May 2023 by nodal officer								
Mandatory Electives Field Project I 6+6+2=14 (Credits (There will be only 1) paper of Elective whereby, 2 papers will have 6 credits and 1 paper will be 4 (Credits for Theory and 2 credits for manufactor for practicals) (The distribution of credits will be 4 Credits for manufactor practicals) (The distribution of credits distribution of credits will be 4 Credits for manuscript, preparation arabet, writing of manuscript, preparation arabet, writing of manuscript, preparation arabet, preparation arabet, writing of manuscript, preparation arabet, writing practicals) (The distribution of credits for manuscript, preparation arabet, writing prepared will be all prepare will be all credits for manuscript, preparation arabet, prepared will be all credits for manuscript, preparation arabet, prepared similar of hereword as 2 Credits 4 Credits 4 Credits will be all will be all prepared will be all prepared will be all prepared will be all prepared will manuscript writing. 2 Credits all be all prepared will be all prepared will be all prepared writing be all prepared writing writing be all prepared writhe all prepared writing writhe all prepared writing be a	Semester	Major		Research Methodology	On Job Training or	Researc h Project	Credits/ Semester	Degree / Cumulati ve Credits	
I 6 + 6 + 2 = 14 Credits 4 Credits (There will be light only 1 paper of Research whereby, 2 papers will be only 1 paper of Research Methodology, whereby, 3 Credits of Theory for that paper, the theory for that paper, the theory for that paper, the theory paper can have a units; whereby, the distribution of credits for Theory and 2 credits for Theory and 2 credits for that paper; note that the paper, into that since it is post graduate practicals) (note that since it is post graduate practical); note that since it is post graduate practical for mandatory paper have been proposed 4 Credits (There will be 1 credits for that paper; note that the paper; note that the paper; note that the paper will not have practical of research methodology credits for the same there for credits for practical of research methodology paper have been proposed 4 Credits (There will be 3 credits for the same there for credits for the same there for credits for theory and 1 paper of Elective research methodology paper for Cong and 1 paper will have 2 credits (There will be 3 credits for practical); note that since it is post graduate programme, herefore the distribution of credits will be 3 credits for practicals) (not that since it is post graduate programme, herefore the aumber of credits for practicals) (not that since it is post graduate programme, herefore the aumber of credits for practical for mandatory paper have been proposed as 2 Credits 4 Credits (There will be 3 credits for practical for mandatory paper and paper) for Cong and 1 credits for practical for mandatory paper have been proposed as 2 Credits 4 Credits (There will be 3 credits for practical for mandatory paper have been proposed as 2 Credits 4 Credits (There will be 3 credits for practical for mandatory paper have been proposed as 2 Credits 4 Credits (There will be 3 credits for practical for mandatory paper have been proposed as 2 Credits		Mandatory	Electives		Field Project				
II6 + 6 + 2 = 14 Credits (There will be 3 papers, whereby, 2 papers will have 6 credits and 1 paper will have 2 credits) (The distribution of 6 credits will be 4 Credits for practicals) (The distribution of 2 credits is for practicals) (The distribution of 2 credits is or practicals) (The or practicals) (The distribution of 2 credits for practicals) (The distribution of 2 credits for practicals) (The or practicals) (The distribution of 2 credits for practicals) (The or practicals) (The distribution of 2 credits for practicals) (The or practicals) (The distribution of credits for practicals) (The distribution of 2 credits for practicals) (The distribution of credits for the programme, therefore the number of credits for practical for mandatory paper have been proposed as 2 Credits4 Credits4 Credits22 CreditsTotal of L e At28 Credits8 Credits4 Credits4 Credits24 Credits	I	6 + 6 + 2 = 14 Credits (There will be 3 papers, whereby, 2 papers will have 6 credits and 1 paper will have 2 credits) (The distribution of 6 credits will be 4 Credits for Theory and 2 credits for practicals) (The distribution of 2 credits will be only for theory and that paper will not have practicals); note that since it is post graduate programme, therefore the number of credits for practical for mandatory paper have been proposed as 2 Credits	4 Credits (There will be only 1 paper of Elective relevant to Major Subject, whereby, the distribution of credits will be 3 credits for Theory and 1 credit for Practical)	4 Credits (There will be only 1 paper of Research Methodology, whereby, 3 Credits for Theory for that paper, the theory paper can have 3 units; whereas there will be 1 Credit for Practical for that paper); note that the practical component for research methodology can be writing of review of research paper, writing of abstract of research article, writing of manuscript, preparation and presentation of			22 Credits	MSc Part-I or Post Gradua te Diplom a 44 Credits	
Total of Lease 28 Credits 8 Credits 4 Credits 44 Credits	П	6+6+2=14 Credits (There will be 3 papers, whereby, 2 papers will have 6 credits and 1 paper will have 2 credits (The distribution of 6 credits will be 4 Credits for practicals) (The distribution of 2 credits for practicals) (The distribution of 2 credits will be only for theory and that paper will not have practicals); note that since it is post graduate programme, therefore the number of credits for practical for mandatory paper have been proposed as 2 Credits	4 Credits (There will be only 1 paper of Elective relevant to Major Subject, whereby, the distribution of credits will be 3 credits for Theory and 1 credit for Practical)		4 Credits (There will not be any theory paper for On Job Training, therefore, 4 Credits will be given as per evaluation criteria to be specially prepared similar to Internship evaluation, for example, regularity and approach towards the on job training, report from the supervisor of the concerned department of the industry or company or institute where the student is doing on job training, observations and maintenance of daily records etc.)		22 Credits		
	Total of I & II	28 Credits	8 Credits	4 Credits	4 Credits		44 Credits		

SIES College of Arts, Science and Commerce Sion (W), Mumbai – 400 022 (Empowered Autonomous) Programme: Master of Science M.Sc.-Chemistry-I (PG Diploma) 2023-24 as per NEP

List of abbreviations:

Cognitive Levels:- R: Remember, U: Understand, Ap: Apply, An: Analyze, E: Evaluate, C:Create

Programme Outcomes (PO)

A student completing M.Sc Chemistry will be able to:

PO1	Complex Problem-Solving approach:
	Use of theory knowledge for solving problems.
PO2	Critical Thinking:
	Think from various perspectives and explore various ideas.
PO3	Reasoning ability and Rational thinking:
	Develop rational thinking on the basis of acquired contextual knowledge
PO4	Research Aptitude:
	Solve the problem individually by applying contextual knowledge and research-based
	insights within an interdisciplinary framework
PO5	Social Interactive Skills and team work:
	Function effectively as an individual member or leader in diverse teams
PO6	Societal Awareness and Sustainable development:
	Demonstrate awareness as well as concern for environmental issues and societal problems
PO7	Life-long learning:
	Acknowledge the necessity for independent and lifelong learning, equipped with the skills
	and readiness to adapt to the ongoing changes in technology.

Programme Specific Outcomes (PSO)

A student completing M.Sc-I (PG Diploma) Chemistry will be able to:

PSO 1	Demonstrate a comprehensive knowledge of all disciplines. (inorganic, organic and
	physical) and its linkages with related disciplinary areas/subjects
PSO 2	To assess and evaluate facts, claims and arguments using their basic and advanced scientific
	knowledge
PSO 3	Develop a foundational understanding of research methodologies, including literature
	review, hypothesis formulation, experimental design, data analysis, and interpretation.
PSO 4	To define a problem, analyse, interpret and draw conclusion by planning, implementing and
	reporting the results of an experiment.
PSO 5	Acquire hands-on experience with advanced chemistry-related equipment and to apply
	modern research techniques to investigate complex chemical phenomena and
	solve practical problems.
PSO 6	Demonstrate competence in quality assurance and quality control practices essential
	for industry.

Course Outcomes (CO) SEMESTER-I

After completion of this Course, the learner will be able to:..... PAPER-I Inorganic Chemistry (Core Course)

	Course Outcome	C L
CO1	Recognize the concept of MOT for polyatomic molecules.	R, U, An, E
CO2	Know how the physical properties like melting and boiling points of molecules get affected by chemical forces present in it.	R, U, Ap
CO3	Understand Symmetry operations and Symmetry elements and point groups	R, U, An
CO4	Examine chemical bonding, visualizing molecular orbitals, behaviour of atoms, molecules and solids using group theory.	R, U, Ap
CO5	Know the importance of Material and solid state chemistry and its various forms, shapes or products.	R, U, Ap
CO6	Recognize Stereochemistry of substitution reactions of octahedral complexes	R, U, Ap

Mapping Matrix

0						
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1		\checkmark				
CO2						
CO3						
CO4		\checkmark			\checkmark	
CO5		\checkmark			\checkmark	
CO6		\checkmark			\checkmark	

PAPER-II Organic Chemistry (Core Course)

	Course Outcome	C L
CO1	Know the kinetic and thermodynamic requirements of organic reactions and	R, U, An, E
	a few methods to determine the reaction mechanisms.	
CO2	Recognize the factors affecting acidity and basicity.	R, U, Ap
CO3	Understand advanced nucleophilic substitutions with special emphasis on	R, U, An
	Neighboring Group Participations (NGP) and factors affecting the NGP.	
CO4	Identify structural, thermochemical, and magnetic criteria for aromaticity,	R, U, Ap
	including NMR characteristics of aromatic systems.	
CO5	Comprehend the concept of chirality, Molecules with tri- and tetra-coordinate	R, U, An
	centers, Axial and planar chirality and prochirality.	
CO6	Explore the applications of different oxidizing and reducing agents in organic	R, U, An
	reactions.	

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1		\checkmark				\checkmark
CO2						
CO3						
CO4						
CO5						
CO6						

PAPER-III Physical Chemistry (Core Course)

	Course Outcome	CL
CO1	Understand Debye Huckel, Onsager equation and its applications	R, U, Ap, An,
	to aqueous and non-aqueous solution.	
CO2	Know different kinds of fuel cells and its applications.	R, U, Ap, An,
CO3	Understand the concept in Bio-electrochemistry.	R, U, An, E,
CO4	Use wave function as basis for determination of irreducible	R, U, Ap
	representations and the Great Orthogonality theorem and its consequence	_
CO5	Know different types of operators and harmonic oscillator.	R, U, Ap, An

Mapping Matrix

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1						
CO2						
CO3						
CO4						
CO5						

PAPER-IV Structural Inorganic Chemistry (Discipline Specific Elective)

	Course Outcome	CL
CO1	Know spectral properties and magnetic measurements of	R, U, Ap
	Coordination compounds	
CO2	Access electronic state and term calculations	U, R
CO3	Know inorganic and metal clusters and their cage compounds	R, U, Ap
CO4	Determine metal-metal bonding and shape of clusters	U, Ap
CO5	Apply spin Resonance and Nuclear Quadrupole Resonance	U, E
	Spectroscopy	

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	\checkmark				\checkmark	
CO2	\checkmark				\checkmark	
CO3	\checkmark				\checkmark	
CO4	\checkmark			\checkmark	\checkmark	
CO5	\checkmark				\checkmark	

	Course Outcome	CL
CO1	Understand the different research methods and steps in research	R, U, Ap
CO2	Use critical thinking and analytical skills necessary for	U, R
	identifying research problems and formulating research questions.	
CO3	Apply the strategies for designing experiments, collecting and	R, U, Ap
	analyzing data, and interpreting research results.	
CO4	Foster effective communication skills for presenting research	U, Ap
	findings orally and inwritten form.	
CO5	Promote ethical research practices and awareness of responsible	U, E
	conduct in mathematical research	
CO6	Develop problem solving approach	U, An

PAPER-V Research Methodology

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1					\checkmark	
CO2					\checkmark	
CO3					\checkmark	
CO4				\checkmark	\checkmark	
CO5				\checkmark	\checkmark	
CO6				\checkmark	\checkmark	

SEMESTER-II

PAPER-I Inorganic Chemistry (Core Course)

	Course Outcome	C L
CO1	Know inorganic reaction mechanisms involving octahedral and square planar complexes along with stereo chemicsty	R, U, An, E
CO2	Apply organometallic complexes for catalysis	R, U, Ap
CO3	Understand the role of inorganic metal/ complexes in biological system	R, U, An
CO4	Decide role of metals in biological system, medicine, blood coagulation,	R, U, Ap
	oxygen storage and transport, photosynthesis and uptake and transport of iron	
CO5	Classify symmetry elements, point group, Group, sub-group and classes	R, U, An
CO6	Solve problem based on point group, matrix representation and character table	R, U, An

Mapping Matrix

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1						
CO2				\checkmark		
CO3				\checkmark		
CO4		\checkmark		\checkmark	\checkmark	
CO5						
CO6						

PAPER-II Organic Chemistry (Core Course)

	Course Outcome	C L
CO1	Apply nucleophilic carbon intermediates reactions for organic synthesis	R, U, An, E
CO2	Understand the reactivity of the carbonyl carbon	R, U, Ap
CO3	Apply the one step synthesis of various organic derivatives using various name reactions and rearrangement reactions	R, U, An
CO4	Recognize the molecular orbital aspect to organic compounds	R, U, Ap
CO5	Understand and apply the principle of stereochemistry	R, U, An
CO6	Interpret the structure of various organic compounds using spectral data	R, U, An

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1		\checkmark				
CO2	\checkmark					
CO3						
CO4						
CO5						
CO6						

AI L'N-II	T T Hysical Chemistry (Core Course)	
	Course Outcome	CL
CO1	Understand the chemical kinetics and molecular reaction	R, U, Ap, An,
	dynamics for elementary reaction	
CO2	Know the enzymatic reactions kinetics, and catalysis	R, U, Ap, An,
CO3	Understand the concept of quantum chemistry with respect to	R, U, An, E,
	rigid rotor and spherical harmonics.	
CO4	Apply the Schrödinger equation for electron system	R, U, Ap

PAPER-III Physical Chemistry (Core Course)

Mapping Matrix

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1						
CO2	\checkmark					
CO3	\checkmark					
CO4				\checkmark		

PAPER-IV Synthetic Organic Chemistry (Discipline Specific Elective)

	Course Outcome	CL
CO1	Use free radical reactions for the organic synthesis	R, U, Ap
CO2	Noethe characterization of the free radical reactions	U, R
CO3	Understand the theoretical concepts behind Enamines, Ylides and	R, U, Ap
	A-C-H Functionalization	
CO4	Apply various Metals / Non-Metals in Organic Synthesis	U, Ap

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1						
CO2					\checkmark	
CO3	\checkmark				\checkmark	
CO4	\checkmark			\checkmark	\checkmark	

M.Sc. Part – I / Post Graduate Diploma in Chemistry

SEMESTER – I

Contents

Majo	Major - Mandatory (6 + 6 + 2 = 14 Credits)					
Paper I SIPCHCC511	:	Inorganic Chemistry (4 Credits)				
SIPCHCC511.1	:	Chemical Bonding and Reactivity				
SIPCHCC511.2	:	Organometallic Chemistry – I				
SIPCHCC511.3	:	Solid states and Chemistry of Inorganic materials				
SIPCHCC511.4	:	Molecular Symmetry and Group Theory – 1				
Paper II SIPCHCC512	:	Organic Chemistry (4 Credits)				
SIPCHCC512.1	:	Physical Organic Chemistry				
SIPCHCC512.2	:	Nucleophilic substitution reactions and Aromaticity				
SIPCHCC512.3	:	Stereochemistry				
SIPCHCC512.4	•	Oxidation and Reduction				
Paper III SIPCHCC513	:	Physical Chemistry (2 Credits)				
SIPCHCC513.1	:	Electrochemistry				
SIPCHCC513.2	:	Quantum Chemistry – I				
Practical						
Paper I SIPCHCCP511	:	Inorganic Chemistry Practical (2 Credits)				
Paper II SIPCHCCP512	:	Organic Chemistry Practical (2 Credits)				
Paper III		No practical for Physical Chemistry.				

DSE SIPCHEL511	:	Discipline Specific Elective (DSE) Structural Inorganic Chemistry (3 Credits)
SIPCHEL511.1	:	Characterization of Coordination compounds
SIPCHEL511.2	:	Cluster Chemistry – I
SIPCHEL511.3	:	Electron Spin Resonance and Nuclear Quadrupole Resonance Spectroscopy
Practical		Discipline Specific Elective (DSE) (1 Credits)
SIPCHELP511	:	Characterization of Complex Compounds
RM		
SIPCHRM511	:	Research Methodology (3 Credits)
SIPCHRM511.1	:	Sources
SIPCHRM511.2	:	Data analysis
SIPCHRM511.3	•	Methods of scientific research and writing scientific papers
Practical		Research Methodology (1 Credits)
SIPCHRMP511	•	Writing review of research paper, writing of abstract of research article, and writing of manuscript. Preparation and presentation of research poster/paper.

SEMESTER – II Contents

Major – Mandatory (6 + 6 + 2 = 14 Credits)			
Paper I SIPCHCC521	:	Inorganic Chemistry (4 Credits)	
SIPCHCC521.1	:	Structure, Bonding, and Stereochemistry of Coordination Compounds	
SIPCHCC521.2	:	Organometallic Chemistry – II	
SIPCHCC521.3	:	Bioinorganic Chemistry	
SIPCHCC521.4	:	Group theory – II	
Paper II			
SIPCHCC522	:	Organic Chemistry (4 Credits)	
SIPCHCC522.1	:	Alkylation of Nucleophilic Carbon Intermediates and Reaction of carbon nucleophiles with carbonyl groups	
SIPCHCC522.2	:	Reactions and Rearrangements	
SIPCHCC522.3	:	Introduction to Molecular Orbital Theory for Organic Chemistry and Applications of UV and IR spectroscopy	
SIPCHCC522.4		NMR spectroscopy and Mass spectrometry	
Paper III SIPCHCC523	:	Physical Chemistry (2 Credits)	
SIPCHCC523.1	:	Chemical Kinetics and Molecular Reaction Dynamics	
SIPCHCC523.2	:	Quantum Chemistry – II	
Practical			
Paper I SIPCHCP521	•	Inorganic Chemistry Practical (2 Credits)	

Paper II		
SIPCHCP522	:	Organic Chemistry Practical (2 Credits)
Paper III		No practical for Physical Chemistry.
DSE SIPCHEL521	:	Discipline Specific Elective (DSE) (3 Credits) Synthetic Organic Chemistry-I
SIPCHEL521.1	:	Radicals in organic synthesis
SIPCHEL521.2	:	Enamines, ylides and α -C-H functionalization
SIPCHEL521.3	:	Metals / non-metals in organic synthesis
Practical		Discipline Specific Elective (DSE) (1 Credits)
DSE		
SIPCHELP521	:	Techniques of purification
	:	On Job Training (4 Credits)
SIPCHOJ521		Internship Evaluation criteria regularity and approach towards the on job training, report from the supervisor of the concerned department of the industry or company or institute where the student is doing on job training, observations and maintenance of daily records etc.

SEMESTER - I

Course Code: SIPCHCC511

Paper I: Inorganic Chemistry

CREDITS: 4

	UNIT- I, 1L/week	
LEAF 1) App 2) To ste	RNING OBJECTIVES: plication to poly atomic species hydrogen bond and its different types. study inorganic reaction mechanism involving octahedral and square planar complexes and their reochemistry.	
1	Chemical Bonding and Reactivity	15 L
1.1	Molecular Orbital Theory for Polyatomic species considering σ bonding for SF ₆ , CO ₂ , B ₂ H ₆ , I ₃ molecular species.	
1.2	 Ligand substitution reactions of: a. Octahedral complexes without breaking of metal-ligand bond (Use of isotopic labelling method) b. Square planar complexes, trans-effect, its theories and applications. Mechanism and factors affecting these substitution reactions. c. Redox reactions: Inner and outer sphere mechanisms, complimentary and non-complimentary reactions. 	
1.3	Stereochemistry of substitution reactions of octahedral complexes. (Isomerization and racemization reactions and applications.)	
	UNIT- II, 1L/week	
LEAF 1. To	RNING OBJECTIVES: study Organometallic Chemistry of Transition metals in details.	
2 Org	anometallic Chemistry – I	15 L
2.1	Eighteen and sixteen electron rule and electron counting with examples.	
2.2	Structure and bonding of following organometallic compounds: (a) Alkyl and aryl derivatives. (b) Carbenes and carbynes	

	(c) Alkene derivatives of Pd and Pt.	
	(d) Alkyne derivatives of Pd and Pt.	
	(e) Allyl derivatives of nickel.	
	Sandwich compounds of Fe, Cr and Half Sandwich compounds of Cr and Mo.	
2.3	Structure and bonding on the basis of VBT and MOT in the following organometallic compounds: Zeise's salt, bis(triphenylphosphine)diphenylacetyleneplatinum(0) $[Pt(PPh_3)_2(HC\equiv CPh)_2]$, diallylnickel(II), ferrocene and bis(arene)chromium(0), tricarbonyl(η^2 -butadiene)iron(0).	
	UNIT III, 1L/week	
LEAF	RNING OBJECTIVES:	
1. To so	understand the electronic structure of solids and methods for preparation of inorganic blids.	
2. To	study crystal defects.	
3 Soli	d states and Chemistry of Inorganic materials	15L
3.1	Solid State Chemistry: Origin of band gap, Classification of inorganic materials into metals, semiconductors, semi-metals and insulators on the basis of electron energy at Brillouin zone boundaries.	
3.2	Factors affecting the crystal structure of solids.	
	Structure of simple compounds in terms of closed packed array of anions-	
	(i) Sphalerite (ZnS)	
	(ii) Wurtzite (ZnS)	
	(iii) Nickel arsenide (NiAs),	
	(iv) Fluorite (AB ₂ for eg CaF ₂) and anti-fluorite structures (for eg Li ₂ O), rutile (TiO ₂) structure and layer structure [Cadmium chloride and iodide (CdCl ₂ , CdI ₂)].	
	(v) Perovskite (ABO ₃ for eg BaTiO ₃)	
	(vi) Spinel (AB ₂ O ₄ for eg CaFe ₂ O ₄)	
3.3	Crystal defects and non-stoichiometry:	
	Recapitulation: Structures and Defects in solids.	
	Types of Defects and Stoichiometry	
	a) Zero dimensional (point) Defects.	
	b) One dimensional (line) Defects.	
	c) Two dimensional (Planar) Defects.	
	d) Thermodynamics of formation of defects (Mathematical derivation to find	
	concentration of defects and numerical problems based on it	

	Unit – IV, 1L/week	
LEAF	RNING OBJECTIVES:	
1.	To study the primary understanding of Group Theory and Molecular Symmetry.	
4 Mol	ecular Symmetry and Group Theory	15 L
4.1	Recapitulation of Symmetry elements and Symmetry operations.	
	Product of symmetry operations, cartesian coordinate system and symmetry elements.	
	Symmetry classification of molecules: Point groups, mathematical requirements for a point group. A systematic procedure for symmetry classification of molecules.	
4.2	Identification of molecular point groups of molecules having low symmetry, high symmetry and special symmetry.	
	Descent in symmetry of molecules with substitution.	
	Concepts of Groups, Sub-groups, Classes of Symmetry operations, Group Multiplication Tables. Abelian and non-Abelian point groups.	
4.3	Representation of Groups: Matrix representation of symmetry operations, reducible and irreducible representations. The Great Orthogonality Theorem and its application in construction of character tables for point groups C_2v , C_3v and D_{2h} , structure of character tables.	
4.4	Symmetry criteria for optical activity, symmetry restrictions on dipole moment.	

- 1. B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers, 2013-2014.
- 2. W. W. Porterfield, Inorganic Chemistry-A Unified Approach, 2nd Ed., Academic Press, 1993.
- 3. B. W. Pfennig, Principles of Inorganic Chemistry, Wiley, 2015.
- 4. C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, Pearson Education Limited, 2nd Edition 2005.
- 5. J. Huheey, F. A. Keiter and R. I. Keiter, Inorganic Chemistry–Principles of Structure and Reactivity, 4th Ed., Harper Collins, 1993.
- 6. P. J. Durrant and B. Durrant, Introduction to Advanced Inorganic Chemistry, Oxford University Press, 1967.
- 7. R. L. Dekock and H.B.Gray, Chemical Structure and Bonding, The Benjamin Cummings Publishing Company, 1989.
- 8. G. Miessler and D. Tarr, Inorganic Chemistry, 3rd Ed., Pearson Education, 2004.
- 9. R. Sarkar, General and Inorganic Chemistry, Books and Allied (P) Ltd., 2001.
- 10.C. M. Day and J. Selbin, Theoretical Inorganic Chemistry, Affiliated East West Press Pvt. Ltd., 1985.

- 11. J. N. Murrell, S. F. A. Kettle and J. M. Tedder, The Chemical Bond, Wiley, 1978.
- 12. G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Inc., 1997.
- 13. F. A. Cotton, Chemical Applications of Group Theory, 2nd Edition, Wiley Eastern Ltd., 1989.
- 14. H. H. Jaffe and M. Orchin, Symmetry in Chemistry, John Wiley and Sons, New York, 1996.
- 15. R. L. Carter, Molecular Symmetry and Group Theory, John Wiley and Sons, NewYork, 1998.
- 16. K. V. Reddy. Symmetry and Spectroscopy of Molecules, 2nd Edition, New Age International Publishers, New Delhi, 2009.
- 17. A. Salahuddin Kunju and G. Krishnan, Group Theory and its Applications in Chemistry, PHI Learning, 2012.
- 18. P. K. Bhattacharya, Group Theory and its Chemical Applications, Himalaya Publishing House. 2014.
- 19. S. Swarnalakshmi, T. Saroja and R. M. Ezhilarasi, A Simple Approach to Group Theory in Chemistry, Universities Press, 2008.
- 20. Solid State Chemistry Introduction, Lesley E. Smart, Elaine A. Moore, ISBN 0-203-49635-3, Taylor and Francis Group, LLC.
- 21. Nanomaterials and Nanochemistry, 2007, Catherine Brechignac, Philippe Houdy, Marcel Lahmani, ISBN 978-3-540-72992-1 Springer Berlin Heidelberg New York.
- 22. Nanomaterials Chemistry, Recent Developments and New Directions C.N.R. Rao, A. Muller, and A.K. Cheetham, ISBN 978-3-527-31664-9, 2007 WILEY-VCH Verlag GmbH and Co.KGaA, Weinheim.
- 23. Nano-Surface Chemistry, 2001, Morton Rosoff, ISBN: 0-8247-0254-9, Marcel Dekker Inc. New York.
- 24. The Chemistry of Nanomaterials, CNR Rao, Muller Cheetham, WILEY-VCHVerlag GmbH and Co. KGaA, Weinheim, 2004.
- 25. Semiconductor Nanomaterials, Challa S.S.R. Kumar, ISBN: 978-3-527-32166-7, WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim, 2010.
- 26. D. Banerjea, Coordination Chemistry Tata McGraw Hill, 1993.
- 27. P.W. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong; Shriver and Atkins: Inorganic Chemistry, 4th ed. Oxford University Press, 2006.
- 28. B. Douglas, D. McDaniel and J. Alexander. Concepts and Models of Inorganic Chemistry (3rd edn.), John Wiley and Sons (1994).

SEMESTER – I Course Code: SIPCHCC512

Paper II: Organic Chemistry

CREDITS: 4

	UNIT-I, 1L/week	
LEAF	RNING OBJECTIVES:	
1. Understand the principles of kinetics and thermodynamics as applied to rates and equilibrium positions of chemical reactions.		
2. To che	describe how experimental verification in the presence of an intermediate or a product in a emical reaction helps in determining a given reaction mechanism.	
3. Un	derstand the basic concept of acidity and basicity.	
1 Phy	sical Organic Chemistry	15 L
1.1	Thermodynamic and kinetic requirements of a reaction: rate and equilibrium constants, reaction coordinate diagram, transition state (activated complex), nature of activated complex, Hammond postulate, reactivity <i>vs</i> selectivity, Curtin-Hammett Principle, microscopic reversibility, kinetic <i>vs</i> thermodynamic control of organic reactions.	
1.2	Determining mechanism of a reaction: Product analysis, kinetic studies, use of isotopes (Kinetic isotope effect – primary and secondary kinetic isotope effect). Detection and trapping of intermediates, crossover experiments and stereo- chemical evidence.	
1.3	Acids and Bases: Factors affecting acidity and basicity: electronegativity and inductive effect, resonance, bond strength, electrostatic effects, hybridization, aromaticity and solvation. Comparative study of acidity and basicity of organic compounds on the basis of pKa values, leveling effect and non-aqueous solvents. Acid and base catalysis – general and specific catalysis with examples.	
	UNIT- II, 1L/week	
LEAF	RNING OBJECTIVES:	
<i>1. 1</i>	<i>To study different types of substitution reactions in aliphatic and aromatic substrates.</i>	
2. T	To understand the concept of aromaticity, anti-aromaticity and homoaromaticity in annulenes, charged rings, fused ring systems and heterocycles.	
2 Nuc	2 Nucleophilic substitution reactions and Aromaticity	
2.1	Nucleophilic substitution reactions: Aliphatic nucleophilic substitution: S_N1 , S_N2 , S_N^{i} reactions, mixed S_N1 and S_N2 and SET mechanisms. S_N reactions involving NGP - participation by aryl rings, σ - and pi-bonds. Factors affecting these reactions: substrate, nucleophilicity, solvent, steric effect, hard-soft interaction, leaving group. Ambident	

	nucleophiles. $S_N cA$, $S_N 1'$ and $S_N 2'$ reactions. S_N at sp^2 (vinylic) carbon.	
2.2	Aromatic nucleophilic substitution: S_NAr , S_N1 , benzyne mechanisms. Ipso, cine, tele and vicarious substitution. Ester hydrolysis: Classification, nomenclature and study of all eight mechanisms of acid and base catalyzed hydrolysis with suitable examples.	
2.3	Aromaticity: Structural, thermochemical and magnetic criteria for aromaticity, including NMR characteristics of aromatic systems. Delocalization and aromaticity. Application of HMO theory to monocyclic conjugated systems. Frost-Musulin diagrams. Huckel's (4_{n+2}) and 4n rules. Aromatic and antiaromatic compounds up to 18 carbon atoms. Homoaromatic compounds. Aromaticity of all benzenoid systems, heterocycles, metallocenes, azulenes, annulenes, aromatic ions and Fullerene (C ₆₀).	
	UNIT III, 1L/week	
LEAF	RNING OBJECTIVES:	
1. <i>To</i>	study the Stereochemistry of different organic molecule with chirality.	
3 Ster	reochemistry	15L
3.1	Concept of Chirality: Recognition of symmetry elements.	
3.2	Molecules with tri- and tetra-coordinate centers: Compounds with carbon, silicon, nitrogen, phosphorous and sulphur chiral centers, relative configurational stabilities.	
3.3	Molecules with two or more chiral centers: Constitutionally unsymmetrical molecules: erythro-threo and syn-anti systems of nomenclature. Interconversion of Fischer,Sawhorse, Newman and Flying wedge projections. Constitutionally symmetrical molecules with odd and even number of chiral centers: enantiomeric and meso forms, concept of stereogenic, chirotopic, and pseudoasymmetric centres. R-S nomenclature for chiral centres in acyclic and cyclic compounds.	
3.4	Axial and planar chirality: Principles of axial and planar chirality. Stereochemical features and configurational descriptors (R, S) for the following classes of compounds: allenes, alkylidene cycloalkanes, spirans, biaryls (buttressing effect) (including BINOLs and BINAPs), ansa compounds, cyclophanes, trans-cyclooctenes.	
3.5	Prochirality: Chiral and prochiral centres, prochiral axis and prochiral plane. Homotopic, heterotopic (enantiotopic and diastereotopic) ligands and faces. Identification using substitution and symmetry criteria. Nomenclature of stereoheterotopic ligands and faces. Symbols for stereoheterotopic ligands in molecules with i) one or more prochiral centres ii) a chiral as well as a prochiral centre, iii) a prochiral axis iv) a prochiral plane v) pro- pseudo asymmetric centre. Symbols for enantiotopic and diastereotopic faces.	
	Unit – IV, 1L/week	
LEAF	LEARNING OBJECTIVES:	
1. To study the primary understanding of Group Theory and Molecular Symmetry.		
4 Oxi	dation and Reduction	15 L

4.1	Oxidation: General mechanism, selectivity, and important applications of the following:	
	4.1.1. Dehydrogenation: Dehydrogenation of C-C bonds including aromatization of six membered rings using metal (Pt, Pd, Ni) and organic reagents (chloranil, DDQ).	
	 4.1.2. Oxidation of alcohols to aldehydes and ketones: Chromium reagents such as K₂Cr₂O₇/H₂SO₄ (Jones reagent), CrO₃-pyridine (Collin's reagent), PCC (Corey's reagent) and PDC (Cornforth reagent), hypervalent iodine reagents (IBX, Dess-Martin periodinane). DMSO based reagents (Swern oxidation), Corey-Kim oxidation - advantages over Swern and limitations; and Pfitzner-Moffatt oxidation-DCC and DMSO and Oppenauer oxidation. 	
	4.1.3. Oxidation involving C-C bonds cleavage: Glycols using HIO ₄ , cycloalkanones using CrO ₃ ; carbon-carbon double bond using ozone, KMnO ₄ , CrO ₃ , NaIO ₄ and OsO ₄ ; aromatic rings using RuO ₄ and NaIO ₄ .	
	4.1.4. Oxidation involving replacement of hydrogen by oxygen: oxidation of CH ₂ to CO by SeO ₂ , oxidation of arylmethanes by CrO ₂ Cl ₂ (Etard oxidation).	
	4.4.5 Oxidation of aldehydes and ketones: with H ₂ O ₂ (Dakin reaction), with peroxy acid	
	(Baeyer-Villiger oxidation)	
4.2	Reduction: General mechanism, selectivity, and important applications of the following reducing reagents:	
	4.2.1. Reduction of CO to CH ₂ in aldehydes and ketones- Clemmensen reduction, Wolff-Kishner reduction and Huang-Minlon modification.	
	4.2.2. Metal hydride reduction: Boron reagents (NaBH ₄ , NaCNBH ₃ , diborane, 9-BBN,	
	Na(OAc) ₃ BH, aluminium reagents (LiAlH ₄ , DIBAL-H, Red Al, L and K-selectrides).	
	4.2.3. NH ₂ NH ₂ (diimide reduction) and other non-metal based agents including organic reducing agents (Hantzsch dihydropyridine).	
	4.2.4. Dissolving metal reductions: using Zn, Li, Na, and Mg under neutral and acidic conditions, Li/Na-liquid NH ₃ mediated reduction (Birch reduction) of aromatic compounds and acetylenes.	

- 1. Physical Organic Chemistry, Neil Isaacs
- 2. Modern Physical Organic Chemistry, Eric V. Anslyn and Dennis A. Dougherty
- 3. Comprehensive Organic chemistry, Barton and Ollis, Vol 1
- 4. Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P. Wothers, Oxford University Press.
- 5. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Part A and B, Plenum Press.
- 6. Stereochemistry: Conformation and mechanism, P.S. Kalsi, New Age International, New Delhi.

- 7. Stereochemistry of carbon compounds, E.L Eliel, S.H Wilen and L.N Manden, Wiley.
- 8. Stereochemistry of Organic Compounds- Principles and Applications, D. Nasipuri. New International Publishers Ltd.
- 9. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Jerry March, Wiley.
- 10. Advanced Organic Chemistry: Reactions and mechanism, B. Miller and R. Prasad, Pearson Education.
- 11. Advanced Organic Chemistry: Reaction mechanisms, R. Bruckner, Academic Press.
- 12. Understanding Organic Reaction Mechanisms, Adams Jacobs, Cambridge University Press.
- 13. Writing Reaction Mechanism in organic chemistry, A. Miller, P.H. Solomons, Academic Press.
- 14. Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Nelson Thornes.
- 15. Advanced Organic Chemistry: Reactions and mechanism, L.G. Wade, Jr., Maya Shankar Singh, Pearson Education.
- 16. Mechanism in Organic Chemistry, Peter Sykes, 6th edition onwards.
- 17. Modern Methods of Organic Synthesis, W. Carruthers and Iain Coldham, Cambridge University Press.
- 18. Organic Synthesis, Jagdamba Singh, L.D.S. Yadav, Pragati Prakashan.

Semester I

Course Code: SIPCHCC513

Paper III: Physical Chemistry

CREDITS: 2

	UNIT- I, 1L/week	
LEAF	RNING OBJECTIVES:	
1 To aqu	understand Debye Huckel, Onsager equation and its applications to aqueous and non- ueous solution.	
2 To	study different kinds of fuel cells and its applications.	
3 To	introduce the learner to concept in Bio-electrochemistry.	
1 Phy	sical Chemistry – Electrochemistry	15 L
1.1	Debye-Hückel theory of activity coefficient, Debye-Hückel limiting law and it's extension to higher concentration (derivations are expected).	
1.2	Electrolytic conductance and ionic interaction, relaxation effect. Debye-Hückel- Onsager equation (derivation expected). Validity of this equation for aqueous and non- aqueous solution, deviations from Onsager equation, Debye-Falkenhagen effect (dispersion of conductance at high frequencies), Wien effect.	
1.3	Batteries: Alkaline fuel cells, Phosphoric acid fuel cells, High temperature fuel cells [Solid –Oxide Fuel Cells (SOFC) and Molten Carbonate Fuel Cells]	
1.4	Bio-electrochemistry: Introduction, cells and membranes, membrane potentials, theory of membrane potentials, interfacial electron transfer in biological systems, adsorption of proteins onto metals from solution, electron transfer from modified metals to dissolved protein in solution, enzymes as electrodes, electrochemical enzyme-catalysed oxidation of styrene. Goldmann equation. (derivations are expected)	
	UNIT- II, 1L/week	
LEAF	RNING OBJECTIVES:	
1. To	learn the need for quantum mechanics.	
2. App	plication of Schrodinger wave equation.	
3. To study different types of operators and harmonic oscillator.		
2 Qua	ntum Chemistry – I	15 L
2.1	Classical Mechanics, failure of classical mechanics: Need for Quantum Mechanics.	

2.2	Particle waves and Schrödinger wave equation, wave functions, properties of wave functions, Normalization of wave functions, orthogonality of wave functions.	
2.3	Operators and their algebra, linear and Hermitian operators, operators for the dynamic variables of a system such as, position, linear momentum, angular momentum, totalenergy, eigen functions, eigen values and eigen value equation, Schrödinger wave equation as the eigen value equation of the Hamiltonian operator, average value and the expectation value of a dynamic variable of the system, Postulates of Quantum Mechanics, Schrödinger's Time independent wave equation from Schrödinger's time dependent wave equation.	
2.4	Application of quantum mechanics to the following systems:	
	a) Free particle, wave function and energy of a free particle.	
	b) Particle in a one, two and three dimensional box, separation of variables, Expression for the wave function of the system, expression for the energy of the system, conceptof quantization, introduction of quantum number, degeneracy of the energy levels.	
	c) Harmonic oscillator, approximate solution of the equation, Hermite polynomials, expression for wave function, expression for energy, use of the recursion formula.	

- 1. Ira N. Levine, Quantum Chemistry, 5th Edn., Pearson Education (Singapore) Pte. Ltd., Indian Branch, New Delhi, 2000.
- 2. Thomas Engel and Philip Reid, Physical Chemistry, 3rd Edn., Pearson Education Limited 2013.
- 3. D.N. Bajpai, Advanced Physical Chemistry, S. Chand 1st Edn., 1992.
- 4. Bockris, John O'M, Reddy, Amulya K.N., Gamboa-Aldeco, Maria E., Modern Electrochemistry, 2A, Plenum Publishers, 1998.
- 5. Physical Chemistry by Gurtu and Gurtu.
- 6. A Text book of Physical Chemistry by K L Kapoor Vol 5, 2nd Edn
- 7. B.K. Sen, Quantum Chemistry including Spectroscopy, Kalyani Publishers, 2003.
- 8. A.K. Chandra, Introductory Quantum Chemistry, Tata McGraw Hill, 1994.
- 9. R.K. Prasad, Quantum Chemistry, 2nd Edn., New Age International Publishers, 2000.
- 10. S. Glasstone, Thermodynamics for Chemists, Affiliated East-West Press, New Delhi, 1964.

Semester I Course Code: SIPCHEL511

Structural Inorganic Chemistry (Discipline Specific Elective) (DSE)

CREDITS: 3

	UNIT- I, 1L/week		
LEAF	LEARNING OBJECTIVES:		
1.	To study the spectral properties of Coordination compounds.		
1 Cha	racterization of Coordination compounds	15 L	
1.1	Stability studies of coordination complexes using potentiometry.		
1.2	Electronic states and term calculations (D and F term), Spectral calculations using Orgel and Tanabe-Sugano diagram, calculation of electronic parameters such as Δ , β , C, Nephelauxetic ratio.		
1.3	Electronic spectral and magnetic measurements using IR and ESR spectroscopic methods.		
	UNIT- II, 1L/week		
LEARNING OBJECTIVES:			
1.	To study the concepts of inorganic and metal clusters and their cage compounds		
2 Clus	2 Cluster Chemistry - I		
2.1	Inorganic cluster and cage compounds		
	(i) Introduction (ii) Bonding in boranes (iii) Heteroboranes (iv) Carboranes		
	(v) Cluster compounds (vi) Electron precise compounds and their relation to clusters.		
2.2	Chemistry of Metal clusters		
	(a) Metal-Metal Bonding and Metal Clusters.		
	(b) Electron Count and Structures of Clusters.		
	(c) Isolobal Analogy.		
	UNIT III, 1L/week		
LEAF	RNING OBJECTIVES:		
1.	To learn ESR and NQR spectroscopy.		

3 Elec	tron Spin Resonance and Nuclear Quadrupole Resonance Spectroscopy	15L
3.1	Electron Spin Resonance Spectroscopy	
	(a) Electron behaviour, interaction between electron spin and magnetic field.	
	(b) Relaxation processes and Line width in ESR transitions:	
	(i) Spin polarization for atoms and transition metal ions.	
	(ii) Spin-orbit coupling and significance of 'g' tensors.	
	(c) Application to transition metal complexes (having one unpaired electron).	
3.2	Nuclear Quadrupole Resonance Spectroscopy	
	Quadrupole nuclei, quadrupole moments, electric fields gradient, coupling constant, splitting, application	

- 1. Gary Wulfsberg, Inorganic Chemistry; Viva Books PA Ltd., New Delhi; 2002.
- 2. F.A. Cotton and Wilkinson, Advanced Inorganic Chemistry, 3rd edition.
- James E. Huheey, Inorganic Chemistry, 3rd edition, Harper and Row, Publishers, Asia, Pte Ltd., 1983.
- 4. W.W. Porterfield, Inorganic Chemistry-An Unified Approach, Academic press (1993);
- 5. D.F. Shriver, P.W. Atkins and C.H. Langford, Inorganic Chemistry, 3rd edition Oxford University Press, 1999.
- Asim K. Das, Fundamental Concepts of Inorganic Chemistry, (Volumes-I, II and III)CBS Pub.(2000)
- 7. N.N. Greenwood and A. Earnshaw, Chemistry of Elements, Pergamon, 1984.
- 8. J.M.Hollas, Symmetry in Chemistry, Chapman and Hall Ltd., NY, 1972.
- F.A.Cotton, Chemical Applications of Group Theory, 2nd edition, Wiley Eastern Ltd., New Delhi, 1976.
- 10. C.J. Ballhausen and H.B.Gray, Molecular Orbital Theory, McGraw-Hill, New York, 1965.
- 11. H. Sisler, Chemistry in Non-aqueous Solvents: New York Reinhold Publ. 1965.
- 12. J.J. Lagowski, The Chemistry of Non-aqueous Solvents, Academic press, New York and London.
- C.M. Day and Joel Selbin, Theoretical Inorganic Chemistry, Affiliated East West Press Pvt. Ltd., 1985.

- 14. F. Basolo and R.G. Pearson, Mechanisms of Inorganic Reactions, Wiley, New York, 1967.
- 15. J.D. Lee, Concise Inorganic Chemistry, 5th edition, Blackwell Science Ltd., 2005.
- 16. R.H. Crabtree, The Organometallic Chemistry of the Transition Metals, Wiley-Interscience, New York,
- 17. G.W. Parshall and S.D. Ittel, Homogeneous Catalysis, 2nd edition, John Wiley and sons, Inc., New York.
- 18. Gary O. Spessard and Gary L. Miessler, Organometallic Chemistry, Prentice-Hall, (1997).
- 29. R.C. Mehrotra and A. Singh, Organometallic Chemistry-A Unified Approach, 2nd ed., New Age International Pvt. Ltd., 2000.
- 20. B. Douglas, D.H. McDaniel and J.J. Alexander, Concepts and Models of Inorganic Chemistry, 2nd edition, John Wiley and Sons,1983.
- 21. James E. Huheey, Inorganic Chemistry-Principles of structure and reactivity, edn Harper and Row Publishers (1972).
- F. A. Cotton, G. Wilkinson, C. Murillo and M. Bochmann, Advanced Inorganic Chemistry, 6th ed., John Wiley, New York, 1999.
- F.A. Cotton and R.A. Walton, Multiple Bonds between Metal Atoms, 2nd edition, Claranden Press, Oxford, 1993.
- 24. P.L. Soni, Vandana Soni, Ane Books Pvt., Ltd.
- 25. D. Harvey, Modern Analytical Chemistry, The McGraw-Hill Pub, 1st Edition (2000);
- 26. John H. Block, E.B. Roche, T.P.Spine and Charles O.Wilson, Inorganic Medicinal and Pharmaceutical Chemistry, Lea and Febiger, 1974.
- 27. R. S. Drago, Physical Methods in Inorganic Chemistry, John-Wiley Pub., 1975.
- M. Drescher and G. Jeschke, (Eds), EPR Spectroscopy: Applications in Chemistry and Biology, Springer-Verlag Berlin, Heidelberg 2012
- 29. Graham Smith; David Keeble. Introduction to Modern EPR Spectroscopy CRC Press 2013.
- 30. R. V. Parish. NMR, NQR, EPR and mössbauer spectroscopy in inorganic chemistry. Ellis Horwood, Chichester, 1990,
- 31. A. Syamal R.L. Dutta, Elements of Magnetochemistry, East West Press, 2nd Edition, 2004.

Semester I Course Code: SIPCHRM511

Research Methodology (RM)

CREDITS: 3

	UNIT- I, 1L/week	
LEAF	LEARNING OBJECTIVES:	
1. To 2. To 3. To	 To learn research methodology for research data analysis and scientific writing. To study the chemical safety and ethical handling of chemicals. To learn writing skills in scientific research project/ practical work. 	
1 Sou	rces	15 L
1.1	Print: Primary, Secondary and Tertiary sources.	
1.2	Journals: Journal abbreviations, abstracts, current titles, reviews, monographs, dictionaries, textbooks, current contents, Introduction to Chemical Abstracts and Beilstein, Subject Index, Substance Index, Author Index, Formula Index, and other Indices with examples.	
1.3	Digital: Web sources, E-journals, Journal access, TOC alerts, Hot articles, Citation Index, Impact factor, H-index, E-consortium, UGC infonet, E-books, Internet discussion groups and communities, Blogs, preprint servers, Search engines, Scirus, Google Scholar, ChemIndustry, Wiki-databases, ChemSpider, Science Direct, SciFinder, Scopus.	
1.4	Information Technology and Library Resources: The Internet and World wide web, Internet resources for Chemistry, finding and citing published information	
	Internet resources for chemistry, finding and enting published information.	
	UNIT- II, 1L/week	
LEAF	RNING OBJECTIVES:	
1.	To analyze research data	
2 Data	a Analysis	15 L
2.1	The Investigative Approach:	
	Making and recording Measurements, SI units and their use, Scientific methods, and	
2.2	design of experiments.	
<i>4.4</i>	Descriptive statistics choosing and using statistical tests. Chemometrics Analysis of	
	Variance (ANOVA), Correlation and regression, curve fitting, fitting of linear equations.	
	simple linear cases, weighted linear case, analysis of residuals, general polynomial fitting,	
	linearizing transformations, exponential function fit, r and its abuse, basic aspects of	
	multiple linear regression analysis.	

	UNIT III, 1L/week	
LEAF	LEARNING OBJECTIVES:	
	1. To understand the methods of scientific paper writing.	
3 Met	hods of Scientific Research and Writing Scientific Papers	15 L
3.1	Methods of Scientific Research:	
	Reporting practical and project work, writing literature surveys and reviews, organizing a	
	poster display, giving an oral presentation.	
3.2	Writing Scientific Papers:	
	Justification for scientific contributions, bibliography, description of methods, conclusions,	
	the need for illustration, style, publications of scientific work, writing ethics, avoiding	
	plagiarism.	

- 1 Hibbert, D. B. & Gooding, J. J. (2006) Data Analysis for Chemistry Oxford University Press.
- 2 Harris, D. C. (2007) Quantitative Chemical Analysis 6th Ed., Freeman Chapters 3-5
- 3 Levie, R. De. (2001) *How to use Excel in Analytical Chemistry and in general scientific data analysis* Cambridge University Press.
- 4 Topping, J., (1984) *Errors of Observation and their Treatment* 4th Ed., Chapman Hill, London.

SEMESTER – I PRACTICALS

INACTICALS

Course Code: SIPCHCCP511

Practical Paper I: Inorganic Chemistry Practical

	(4L/Week)
1	Ores and Alloys
	1) Analysis of Devarda's alloy.
	2) Analysis of Cu – Ni alloy.
	3) Analysis of Tin Solder alloy.
	4) Analysis of Limestone.
	Instrumentation
	1) Estimation of Copper using Iodometric method Potentiometrically.
	2) Estimation of Fe^{+3} solution using Ce (IV) ions Potentiometrically.
	Reference:
	 Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1st Edn., 2010., U.N.Dhur and Sons Pvt Ltd.
	 The Synthesis and Characterization of Inorganic Compounds by William L. Jolly.
	3. Inorganic Chemistry Practical under UGC Syllabus for M.Sc. by: Dr. Deepak Pant.

SEMESTER – I

PRACTICALS

Course Code: SIPCHCCP512

Practical Paper II: Organic Chemistry Practical

	(4L/Week)
1	One step preparations (1.0 g scale)
	1. Bromobenzene to <i>p</i> -nitrobromobenzene.
	2. Anthracene to anthraquinone.
	3. Benzoin to benzil.
	4. Anthracene to Anthracene maleic anhydride adduct.
	5. Ethyl acetoacetate to 3-methyl-1-phenylpyrazol-5-one.
	6. <i>o</i> -Phenylenediamine to 2-methylbenzimidazole.
	7. Urea and benzil to 5,5-diphenylhydantoin.
	Learning points:
	1. Planning of synthesis, effect of reaction parameters including stoichiometry, and
	safety aspects including MSDS should be learnt.
	2. Purify the product by crystallization. Formation and purity of the product should be
	checked by TLC.
	3. Report mass and melting point of the purified product.

SEMESTER – I PRACTICALS Course Code: SIPSCHELP511

Characterization of Complex Compounds Practical (Discipline Specific Elective)

	(2L/Week)
1	Characterization of Complex Compounds (Analysis and Characterization)
	Analysis
	1. Analysis of fasting salt for chloride.
	2. Analysis of Zinc Blende.
	Instrumentation
	1. Determination of Stability constant of $[Ag(en)]^+$ by potentiometry.
	2. Determination of CFSE values of hexa-aqua complexes of Ti^{3+} and Cr^{3+} .
	3. Determination of Racah parameters for complex $[Ni(H_2O)_6]^{2+}$ and $[Ni(en)_3]^{2+}$.
	4. Spectral interpretation by ESR and NQR studies.
	Reference:
	1. A. I. Vogel's, Quantitative Inorganic Analysis.
	2. J. D. Woolins, Inorganic Experiments.
	3. G. Raj, Advanced Practical Inorganic Chemistry.
	4. J. E. House, Inorganic chemistry, Academic press, 2nd edition, (2013).
	5. R. V. Parish. NMR, NQR, EPR and Mössbauer spectroscopy in inorganic
	chemistry.Ellis Horwood, Chichester, 1990
	6. A. Syamal R.L. Dutta, Elements of Magnetochemistry, East West Press, 2nd Edition,
	2004.

Course Code: SIPSCHRMP511

Practical: Research Methodology (RM) CREDITS: 1

	(2L/Week)
Lear	ning Objectives:
1. To ma 2. To	<i>study</i> writing of review of research paper, abstract of research article and writing of unuscript. <i>learn the</i> preparation and presentation of research poster/paper.
1	Research Methodology Practical Session
	1. Writing of review of research paper.
	2. Writing abstracts of research article and writing of manuscript.
	3. Preparation and presentation of research poster/paper.
	Note:
	 The candidate is expected to submit a journal and project certified by the Head of the Department /institution at the time of the practical examination. A candidate will not be allowed to appear for the practical examination unless he/she produces a certified journal or a certificate from the Head of the Institution / department stating that the journal is lost, and the candidate has performed the requirednumber of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such a certificate. Use of non-programmable calculator is allowed both at the theory and the practical examination.
	 Reference: 1. Dean, J. R., Jones, A. M., Holmes, D., Reed, R., Weyers, J., & Jones, A., (2011), <i>Practical skills in Chemistry</i>, 2nd Ed., Prentice Hall, Harlow.
	 Hibbert, D. B. & Gooding, J. J. (2006) <i>Data Analysis for Chemistry</i> Oxford University Press.
	3. Harris, D. C. (2007) <i>Quantitative Chemical Analysis</i> 6 th Ed., Freeman Chapters 3-5.
	4. Levie, R. De. (2001) <i>How to use Excel in Analytical Chemistry and in general scientific data analysis</i> Cambridge University Press.
	 Topping, J., (1984) Errors of Observation and their Treatment 4th Ed., Chapman Hill, London.

SEMESTER - II

Course Code: SIPCHCC521

Paper I: Inorganic Chemistry

CREDITS: 4

UNIT- I , 1L/week		
LEA	LEARNING OBJECTIVES:	
1. To st	1. To study inorganic reaction mechanism involving octahedral and square planar complexes and their stereochemistry.	
Struc	cture, Bonding, and Stereochemistry of Coordination Compounds	15L
1.1	Structure, Bonding, and Stereochemistry of Coordination Compounds	
	(a) Structure and Bonding:	
	i) Molecular Orbital Theory for Complexes with coordination number 4 and 5 for the central ion (sigma as well as pi bonding)	
	(ii) Angular Overlap Model for octahedral and tetrahedral complexes for sigma and pi bond.	
	(b) Stereochemistry of Coordination Compounds:	
	(i) Chirality and Fluxionality of coordination compounds with higher coordination numbers.	
	(ii) Geometries of coordination compounds from coordination number 6 to 9.	
	UNIT- II, 1L/week	
LEA	RNING OBJECTIVES:	
1. To	study Organometallic Chemistry of Transition metals in details.	
2 Org	ganometallic Chemistry - II	15L
2.1	Applications of Organometallic Compounds	
	(a) Catalysis-Homogenous and Heterogeneous Catalysis: Comparison, Fundamental Reaction Steps.	
	(b) Organometallics as Catalysts in Organic Reactions: (i) Hydrosilylation (ii) Hydroboration (iii) Water gas Shifts reaction (iv) Wacker process (oxidation of alkenes) (v) Alcohol carbonylation.	
	(c) Coupling reactions: (i) Heck reaction (ii) Suzuki reaction.	
UNIT III, 1L/week		
LEA	LEARNING OBJECTIVES:	
1	. To study the principle of Bioinorganic Chemistry.	

3 Bioinorganic Chemistry - I		15L
3.1	Biological oxygen carriers; hemoglobin, hemerythrene and hemocyanine- structure of metal active center and differences in mechanism of oxygen binding, Differences between hemoglobin and myoglobin: Cooperativity of oxygen binding in hemoglobin and Hill equation, pH dependence of oxygen affinity in hemoglobin and myoglobin and its implications.	
3.2	Activation of oxygen in biological system with examples of mono-oxygenases, and oxidases- structure of the metal center and mechanism of oxygen activation by these enzymes.	
3.3	Copper containing enzymes- superoxide dismutase, tyrosinase and laccase: catalytic reactions and the structures of the metal binding site.	
3.4	Nitrogen fixation - nitrogenase, hydrogenases.	
3.5	Metal ion transport and storage: Ionophores, transferrin, ferritin and metallothionins.	
3.6	Medicinal applications of cis - platin and related compounds.	
	UNIT IV, 1L/week	
LEA	RNING OBJECTIVES:	
1.	To study the applications of group theory	
4 Gro	oup Theory – II	15L
4.1	Applications of Group Theory	
	(a) Symmetry adapted linear combinations (SALC), symmetry aspects of MO theory, sigma bonding in AB _n (Ammonia, CH ₄) molecule.	
	(b) Determination of symmetry species for translations and rotations.	
	(c) Mulliken's notations for irreducible representations.	
	(d) Reduction of reducible representations using reduction formula.	
	(e) Group-subgroup relationships.	
	Descent and ascent in symmetry correlation diagrams showing relationship between different groups.	
4.2	Applications of group theory to electronic structures	
	(a) Transformation Properties of Atomic Orbitals.	
	(b) Sigma and pi- molecular orbitals for AB_4 (tetrahedral) and AB_6 (octahedral) molecules.	
	(c) Ligand Field Theory: Electronic structures of free atoms and ions, Splitting of levels and terms in a chemical environment, Construction of energy level diagrams, Direct product, Correlation diagrams for d ² ions in octahedral and tetrahedral ligand field, Methods of Ascending and Descending Symmetry, Hole formalism.	

Unit I

- 1. P. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong, Inorganic Chemistry, 5th Ed., Oxford University Press, 2010.
- 2. D. Banerjea, Coordination Chemistry, Tata McGraw Hill, 1993.
- 3. W. H. Malik, G. D. Tuli and R. D. Madan, Selected Topics in Inorganic Chemistry, 8th Ed., S. Chand and Company Ltd.
- 4. M. L. Tobe and J. Burgess, Inorganic Reaction Mechanism, Longman, 1999.
- 5. S. Asperger, Chemical kinetics and Inorganic Reaction Mechanism, 2nd Ed., Kluwer Academic/ Plenum Publishers, 2002
- 6. Gurdeep Raj, Advanced Inorganic Chemistry-Vol.II, 12th Edition, Goel publishing house, 2012.
- 7. B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers, 2013-2014.
- 8. F. Basalo and R. G. Pearson, Mechanism of Inorganic Reactions, 2nd Ed., Wiley, 1967.
- 9. R. Gopalan and V. Ramlingam, Concise Coordination chemistry, Vikas Publishing house Pvt Ltd., 2001.
- 10. Robert B. Jordan, Reaction Mechanisms of Inorganic and Organometallic Systems, 3rd Ed., Oxford University Press 2008.

Unit II

- 1. R.C Mehrotra and A. Singh, Organometallic Chemistry- A unified Approach, 2nd revisededition, New Age International Pvt. Ltd., 2020.
- 2. R.H Crabtree, The Organometallic Chemistry of the Transition Metals, 6th edition, Wiley International Pvt., Ltd. 2014.
- 3. B. Doughlas, D.H McDaniel and J.J Alexander. Concepts and Models of Inorganic Chemistry, 3rd edition, John Wiley and Sons. 1994.
- 4. Organometallic Chemistry by G.S Sodhi, Ane Books Pvt. Ltd.

Unit III

- 1. Environmental Chemistry 5th edition, Colin Baird Michael Cann, W. H. Freeman and Company, New York, 2012.
- 2. Environmental Chemistry 7th edition, Stanley E. Manahan, CRC Press Publishers,
- 3. Environmental Contaminants, Daniel A. Vallero, ISBN: 0-12-710057-1, Elsevier Inc., 2004.
- 4. Environmental Science 13th edition, G. Tyler Miller Jr. and Scott E. Spoolman, ISBN- 10: 0-495-56016-2, Brooks/Cole, Cengage Learning, 2010.
- 5. Fundamentals of Environmental and Toxicological Chemistry 4th edition, Stanley E.

Manahan, ISBN: 978-1-4665-5317-0, CRC Press Taylor and Francis Group, 2013.

- 6. Living in the Environment 17th edition, G. Tyler Miller Jr. and Scott E. Spoolman, ISBN-10: 0-538-49414-X, Brooks/Cole, Cengage Learning, 2011
- 7. Poisoning and Toxicology Handbook, Jerrold B. Leikin, Frank P. Paloucek, ISBN: 1- 4200-4479-6, Informa Healthcare USA, Inc.
- 8. Casarett and Doull's Toxicology The Basic Science of Poisons 6th edition, McGraw- Hill, 2001.

Unit IV

- 1. R. W. Hay, Bioinorganic Chemistry, Ellis Harwood, England, 1984.
- 2. I. Bertini, H. B. Gray, S. J. Lippard and J.S. Valentine, Bioinorganic Chemistry, First SouthIndian Edition, Viva Books, New Delhi, 1998.
- 3. J. A. Cowan, Inorganic Biochemistry-An introduction, VCH Publication, 1993.
- 4. S. J. Lippard and J. M. Berg, *Principles of Bioinorganic Chemistry*, University Science Publications, Mill Valley, Caligronic, 1994.
- 5. G.N. Mukherjee and A. Das, Elements of Bioinorganic Chemistry, Dhuri and Sons, Calcutta, 1988.
- 6. J. Chem. Educ. (Special issue), November 1985.
- 7. E. Frienden, J. Chem. Educ., 1985, 62.
- 8. Robert R. Crechton, Biological Inorganic Chemistry An Introduction, Elsevier
- 9. J. R. Frausto da Silva and R. J. P. Williams, *The Biological Chemistry of the Elements*, Clarendon Press, Oxford, 1991.
- 10. JM. D. Yudkin and R. E. Offord *A Guidebook to Biochemistry*, Cambridge University Press, 1980.

SEMESTER – II Course Code: SIPCHCC522

Paper II: Organic Chemistry

CREDITS: 4

	UNIT- I, 1L/week	
LEA	RNING OBJECTIVES:	
	1. To study the alkylation of nucleophilic carbon intermediates	
1 All with	cylation of Nucleophilic Carbon Intermediates and Reaction of carbon nucleophiles carbonyl groups	15L
1.1	Alkylation of Nucleophilic Carbon Intermediates:	
	1.1.1. Generation of carbanion, kinetic and thermodynamic enolate formation, regioselectivity in enolate formation, alkylation of enolates.	
	1.1.2. Generation and alkylation of dianion, medium effects in the alkylation of enolates, oxygen versus carbon as the site of alkylation.	
	1.1.3. Alkylation of aldehydes, ketones, esters, amides and nitriles.	
	1.1.4. Nitrogen analogs of enols and enolates- Enamines and Imines anions, alkylation of enamines and imines.	
	1.1.5 Alkylation of carbon nucleophiles by conjugate addition (Michael reaction).	
1.2	Reaction of carbon nucleophiles with carbonyl groups	
	1.2.1 Mechanism of Acid and base catalyzed Aldol condensation, Mixed Aldol condensation with aromatic aldehydes, regiochemistry in mixed reactions of aliphatic aldehydes and ketones, intramolecular Aldol reaction and Robinson annulation.	
	1.2.2 Addition reactions with amines and iminium ions; Mannich reaction.	
	1.2.3 Amine catalyzed condensation reaction: Knoevenagel reaction.	
	1.2.4 Acylation of carbanions.	
	UNIT- II, 1L/week	
LEA] <i>1</i> .	RNING OBJECTIVES: To study and understand the principals involved in reactions and rearrangements with respect to their mechanism and stereochemistry.	
2 Rea	actions and Rearrangements	15L
2.1	Mechanisms, stereochemistry (if applicable) and applications of the following	

	Reactions: Baylis - Hilman reaction, McMurry Coupling, Corey-Fuchs reaction, Nef reaction, Passerini reaction.	
2.2	Concerted rearrangements: Hofmann, Curtius, Lossen, Schmidt, Wolff.	
2.3	Cationic rearrangements: Tiffeneau-Demjanov, Pummerer, Dienone-phenol, Rupe, Wagner Meerwein.	
2.4	Anionic rearrangements: Brook, Neber, Wittig, Payne.	
	UNIT III, 1L/week	
LEA 1. To 2. To	RNING OBJECTIVES: o study the MOT in organic molecules using LCAO method and introduction to FMO and its application. o understand the basic concept of ultraviolet and infrared spectroscopy and its application for ructural determination of organic compounds.	
3 Int IR sp	roduction to Molecular Orbital Theory for Organic Chemistry and Applications of UV and bectroscopy	15L
3.1	Introduction to Molecular Orbital Theory for Organic Chemistry:	
	3.1.1. Molecular orbitals: Formation of σ - and π -MOs by using LCAO method. Formation of π MOs of ethylene, butadiene, 1, 3, 5-hexatriene, allyl cation, anion and radical. Concept of nodal planes and energies of π -MOs	
	3.12 Introduction to FMOs: HOMO and LUMO and significance of HOMO-LUMO gap in absorption spectra as well as chemical reactions. MOs of formaldehyde: The effect of electronegativity perturbation and orbital polarization in formaldehyde. HOMO and LUMO (π and π^* orbitals) of formaldehyde. A brief description of MOs of nucleophiles and electrophiles. Concept of 'donor-acceptor' interactions in nucleophilic addition reactions on formaldehyde. Connection of this HOMO-LUMO interaction with 'curved arrows' used in reaction mechanisms. The concept of hardness and softness and its application to electrophiles and nucleophiles. Examples of hard and soft nucleophiles/ electrophiles. Identification of hard and soft reactive sites on the basis of MOs.	
	3.1.3 Application of FMO concepts in (a) S_N^2 reaction, (b) Lewis acid base adducts (BF ₃ - NH ₃ complex), (c) ethylene dimerization to butadiene, (d) Diels-Alder cycloaddition, (e) regioselective reaction of allyl cation with allyl anion (f) addition of hydride to formaldehyde.	
3.2	Applications of UV and IR spectroscopy:	
	1.2.1 Ultraviolet spectroscopy: Recapitulation, UV spectra of dienes, conjugated polyenes (cyclic and acyclic), carbonyl and unsaturated carbonyl compounds, substituted aromatic compounds. Factors affecting the position and intensity of UV bands – effect of conjugation, steric factor, pH, and solvent polarity. Calculation of absorption maxima for above classes of compounds by Woodward-Fieser rules (using Woodward-Fieser tables forvalues for substituents).	
	1.2.2 Infrared spectroscopy: Fundamental, overtone and combination bands, vibrational	

	coupling, factors affecting vibrational frequency (atomic weight, conjugation, ring size, solvent and hydrogen bonding). Characteristic vibrational frequencies for alkanes, alkenes, alkynes, aromatics, alcohols, ethers, phenols, amines, nitriles and nitro compounds. Detailed study of vibrational frequencies of carbonyl compounds, aldehydes, ketones, esters, amides, acids, acid halides, anhydrides, lactones, lactams and conjugated carbonyl compounds.	
	UNIT IV, 1L/week	
LEA <i>1</i> .	RNING OBJECTIVES: To understand the principle and application of Nuclear Magnetic Resonance and Mass spectroscopy.	
4 NN	IR spectroscopy and Mass spectrometry	15L
4.1	Proton magnetic resonance spectroscopy: Principle, Chemical shift, Factors affecting chemical shift (Electronegativity, H-bonding, Anisotropy effects). Chemical and magnetic equivalence, Chemical shift values and correlation for protons bonded to carbon and other nuclei as in alcohols, phenols, enols, carboxylic acids, amines, amides. Spin-spin coupling, Coupling constant (J), Factors affecting J, geminal, vicinal and long range coupling (allylic and aromatic). First order spectra, Karplus equation.	
4.2	¹³ C NMR spectroscopy: Theory and comparison with proton NMR, proton coupled and decoupled spectra, off-resonance decoupling. Factors influencing carbon shifts, correlation of chemical shifts of aliphatic, olefin, alkyne, aromatic and carbonyl carbons.	
4.3	Mass spectrometry: Molecular ion peak, base peak, isotopic abundance, metastable ions. Nitrogen rule, Determination of molecular formula of organic compounds based on isotopic abundance and HRMS. Fragmentation pattern in various classes of organic compounds (including compounds containing hetero atoms), McLafferty rearrangement, Retro-Diels-Alder reaction, ortho - effect.	
4.4	Structure determination involving individual or combined use of the above spectral techniques.	

- 1. Organic Chemistry, J. Claydens, N. Greeves, S. Warren and P. Wothers, Oxford University Press.
- 2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Part A and B, Plenum Press.
- 3. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Jerry March, Wiley.
- 4. Organic Chemistry, R.T. Morrison, R.N. Boyd and S.K. Bhattacharjee, Pearson Publication (7th Edition)
- 5. Advanced Organic Chemistry: Reactions and mechanism, B. Miller and R. Prasad,

Pearson Education.

- 6. Advanced Organic Chemistry: Reaction mechanisms, R. Bruckner, Academic Press.
- 7. Understanding Organic Reaction Mechanisms, Adams Jacobs, Cambridge University Press.
- 8. Writing Reaction Mechanism in organic chemistry, A. Miller, P.H. Solomons, Academic Press.
- 9. Principles of Organic Synthesis, R.O.C. Norman and J.M Coxon, Nelson Thornes.
- 10. Advanced Organic Chemistry: Reactions and mechanism, L.G. Wade, Jr., Maya Shankar Singh, Pearson Education.
- 11. Mechanism in Organic Chemistry, Peter Sykes, 6th
- 12. Molecular Orbital and Organic chemical reactions, Ian Fleming Reference Edition, Wiley
- 13. Introduction to Spectroscopy, Donald L. Pavia, Gary M. Lampman, George S. Kriz, Thomson Brooks.
- 14. Spectrometric Identification of Organic Compounds, R. Silverstein, G.C Bassler and T.C. Morrill, John Wiley and Sons.
- 15. Organic Spectroscopy, William Kemp, W.H. Freeman and Company.
- 16. Organic Spectroscopy-Principles and Applications, Jagmohan, Narosa Publication.
- 17. Organic Spectroscopy, V.R. Dani, Tata McGraw Hill Publishing Co.
- 18. Spectroscopy of Organic Compounds, P.S. Kalsi, New Age International Ltd.
- 19. Organic Reaction Mechanisms, V.K. Ahluwalia, R.K. Parasher, Alpha Science International, 2011.
- 20. Reactions, Rearrangements and Reagents by S. N. Sanyal
- 21. Name Reactions, Jie Jack Li, Springer
- 22. Name Reactions and Reagents in Organic Synthesis, Bradford P. Mundy, M.G. Ellerd, and F.G. Favaloro, John Wiley and Sons.

Semester II

Course Code: SIPCHCC523

Paper III: Physical Chemistry

CREDITS: 2

	UNIT-I, 1L/week	
LEARNING OBJECTIVES: 1. Describe Elementary reactions in solution, Enzymes and reactions in solid.		
1 Che	mical Kinetics and Molecular Reaction Dynamics	15 L
1.1	Elementary Reactions in Solution: Solvent Effects on reaction rates, Reactions between ions influence of solvent Dielectric constant, influence of ionic strength, Linear free energy, relationships enzyme action.	
1.2	Kinetics of reactions catalyzed by enzymes - Michaelis-Menten analysis, Lineweaver - Burk and Eadie Analysis.	
1.3	Inhibition of Enzyme action: Competitive, Noncompetitive and Uncompetitive Inhibition. Effect of pH, Enzyme activation by metal ions, Regulatory enzymes.	
1.4	Kinetics of reactions in the Solid State: - Factors affecting reactions in solids.	
1.5	Rate laws for reactions in solid: The parabolic rate law, The first order rate Law, the contracting sphere rate law, Contracting area rate law, some examples of kinetic studies.	
	UNIT- II, 1L/week	
LEAF	RNING OBJECTIVES:	
1. To understand the concept of quantum chemistry with respect to rigid rotor, quantization of rotational energy, spherical harmonics.		
2. To	study the applications of Schrödinger equation for electron system	
2 Qua	ntum Chemistry – II	15 L

2.1	Rigid rotor, spherical coordinates Schrödinger wave equation in spherical coordinates, separation of the variables, the phi equation, wave function, quantum number, the theta equation, wave function, quantization of rotational energy, spherical harmonics.						
2.2	Hydrogen atom, the two particle problem, separation of the energy as translational and potential, separation of variables, the R the θ^* and the ϕ equations, solution of the requation, introduction of the four quantum numbers and their interdependence on the basis of the solutions of the three equations, total wave function, expression for the energy, probability density function, distances and energies in atomic units, radial and angular plots, points of maximum probability, expressions for the total wave function for 1s, 2s, 2p and 3d orbitals of hydrogen.						
2.3	Application of the Schrödinger equation to two electron system, limitations of the equation, need for the approximate solutions, methods of obtaining the approximatesolution of the Schrödinger wave equation.						
2.4	Hückel Molecular Orbitals theory for ethylene, 1, 3-butadiene and benzene.						

- 1. Peter Atkins and Julio de Paula, Atkin's *Physical Chemistry*, 7th Edn., Oxford University Press, 2002.
- 2. K.J. Laidler and J.H. Meiser, *Physical Chemistry*, 2nd Ed., CBS Publishers and Distributors, New Delhi, 1999.
- 3. Robert J. Silby and Robert A. Alberty, *Physical Chemistry*, 3rd Edn., John Wiley and Sons (Asia) Pte. Ltd., 2002.
- 4. Ira R. Levine, *Physical Chemistry*, 5th Edn., Tata McGraw-Hill New Delhi, 2002.
- 5. G.W. Castellan, *Physical Chemistry*, 3rd Edn., Narosa Publishing House, New Delhi, 1983.
- S. Glasstone, *Text Book of Physical Chemistry*, 2nd Edn., McMillan and Co. Ltd., London, 1962.
- 7. Principles of Chemical Kinetics, 2nd Ed., James E. House, ELSEVIER, 2007.
- 8 B.K. Sen, *Quantum Chemistry including Spectroscopy*, Kalyani Publishers, 2003.
- 9. A.K. Chandra, Introductory Quantum Chemistry, Tata McGraw Hill, 1994.
- 10. R.K. Prasad, *Quantum Chemistry*, 2nd Edn., New Age International Publishers, 2000.
- 11. W.G. Davis, Introduction to Chemical Thermodynamics A Non Calculus Approach, Saunders, Philadelphia, 19772.
- 12 Ira N. Levine, *Quantum Chemistry*, 5th Edn., Pearson Education (Singapore) Pte. Ltd., Indian Branch, New Delhi, 2000.

SEMESTER – II Discipline Specific Elective (DSE)

Course Code: SIPCHEL521

Synthetic Organic Chemistry – I

CREDITS: 3

	UNIT- I, 1L/week			
LEARNING OBJECTIVES:				
1) Des	1) Describe organic free radical and their importance in organic synthesis.			
1	Radicals in Organic Synthesis	15 L		
1.1	Introduction: Generation, stability, reactivity structural and stereochemical properties of free radicals, Persistent and charged radicals, Electrophilic and nucleophilic radicals.			
1.2	Radical Initiators: azobisisobutyronitrile (AIBN) and dibenzoyl peroxide.			
1.3	Characteristic reactions - Free radical substitution, addition to multiple bonds. Radical chain reactions, radical halogenation of hydrocarbons (Regioselectivity), radical cyclizations, autoxidations: synthesis of cumene hydroperoxide from cumene.			
1.4	Radicals in synthesis : Inter and intra molecular C-C bond formation via mercuric hydride, tin hydride, thiol donors. Cleavage of C-X, C-Sn, C-Co, C-S, O-O bonds. Oxidative coupling, C-C bond formation in aromatics: S _N Ar reactions.			
1.5	Hunsdiecker reaction, Pinacol coupling, McMurry coupling, Sandmeyer reaction, Acyloin condensation.			
	UNIT- II, 1L/week			
LEARNING OBJECTIVES:				
1. Explain the applications of enamines, ylides and α C-H functionalization in organic synthesis.				
2 Enamines, Ylides and A-C-H Functionalization				
2.1	Enamines: Generation and application in organic synthesis with mechanistic pathways, Stork enamine reaction. Reactivity, comparison between enamines and enolates. Synthetic reactions of enamines including asymmetric reactions of chiral enamines derived from			

	chiral secondary amines.						
2.2	2.2 Phosphorus, Sulfur and Nitrogen Ylides: Preparation and their synthetic applications along with their stereochemical aspects. Wittig reaction, Horner-Wadsworth-Emmons Reaction, Barton-Kellogg olefination.						
2.3	2.3 α-C-H functionalization: By nitro, sulfoxide, sulfone and phosphonate groups: generation of carbanions by strong bases (LDA/n-butyl lithium) and applications in C-C bond formation. Bamford-Stevens reaction, Julia olefination and its modification, Seyferth–Gilbert homologation, Steven's rearrangement.						
	UNIT III, 1L/week						
LEAI	RNING OBJECTIVES:						
1.	Apply the applications of organometallic compounds in organic synthesis.						
3 Met	als / Non-Metals in Organic Synthesis	15 L					
3.1	Mercury in organic synthesis: Mechanism and regiochemistry of oxymercuration and demercuration of alkenes, mercuration of aromatics, transformation of aryl mercurials to aryl halides. Organomercurials as carbene transfer reagents.	3 L					
3.2	Organoboron compounds: Mechanism and regiochemistry of hydroboration of alkenes and alkynes, asymmetric hydroboration using chiral boron reagents, 9-BBN hydroboration, oxazaborolidine (CBS catalyst) and functional group reduction by diborane.	3 L					
3.3	Organosilicons: Salient features of silicon governing the reactivity of organosilicons, preparation and important bond-forming reactions of alkyl silanes, alkenyl silanes, aryl silanes and allyl silanes. β -silyl cations as intermediates. Iodotrimethylsilane in organic synthesis.	3 L					
3.4	Silyl enol ethers: Application: As nucleophiles (Michael reaction, Mukaiyama aldol reaction), in ring contraction reactions.	2 L					
3.5	Organotin compounds : Preparation of alkenyl and allyl tin compounds; application in C-C bond formation, in replacement of halogen by H at the same C atom.	2 L					
3.6	Selenium in organic synthesis: Preparation of selenols/selenoxide, selenoxide elimination to create unsaturation, selenoxide and seleno acetals as α -C-H activatinggroups.	2 L					

- 1. Advanced Organic Chemistry, Part A and Part B: Reaction and Synthesis, Francis A. Carey, Richard J. Sundberg, 5th Edition, Springer Verlag
 2. Modern Methods of Organic Synthesis, 4th Edition, W. Carruthers and Iain Coldham,
- Cambridge University Press, 2004.

- 3. Chem.Rev. 2002, 102, 2227-2302, Rare Earth Metal Triflates in Organic Synthesis, S. Kobayashi, M. Sugiura, H. Kitagawa, and W.W.L. Lam.
- 4. Organic Chemistry, Clayden Greeves Warren and Wothers, Oxford Press (2001).
- 5. Moder Organic Synthesis: An Introduction, G.S. Zweifel and M.H. Nantz, W.H. Freeman and Company, (2007).
- 6. Advanced Organic Chemistry: Reaction Mechanism, R. Bruckner, Academic Press (2002).
- 7. Principles of Organic Synthesis, R.O.C. Norman & J. M. Coxon, 3rd Edn., Nelson Thornes
- 8. Organic Chemistry, 7th Edn, R. T. Morrison, R. N. Boyd, & S. K. Bhattacharjee, Pearson
- 9. Strategic Applications of Name Reactions in Organic Synthesis, L. Kurti & B. Czako (2005), Elsevier Academic Press
- 10. Advanced Organic Chemistry: Reactions & Mechanisms, 2nd Edn., B. Miller & R. Prasad, Pearson
- 11. Organic reactions and their mechanisms, 3rd revised edition, P.S. Kalsi, New Age International Publishers
- 12. Organic Synthesis: The Disconnection Approach, Stuart Warren, John Wiley & Sons, 2004
- 13. Name Reactions and Reagents in Organic Synthesis, 2nd Edn., Bradford P. Mundy, Michael G. Ellard, and Frank Favoloro, Jr., Wiley-Interscience
- 14. Name Reactions, Jie Jack Lie, 3rd Edn., Springer
- 15. Organic Electrochemistry, H. Lund, and M. Baizer, 3rd Edn., Marcel Dekker.

SEMESTER – II

Course Code: SIPSCHOJ521:

On Job Training

On Job Training					
1	1 On Job Training				
	There will not be any theory paper for On Job Training, therefore, 4 Credits will be given as per evaluation criteria to be specially prepared similar to Internship evaluation, for example, regularity and approach towards the on job training, report from the supervisor of the concerned department of the industry or company or institute where the student is doing on job training, observations and maintenance of daily records etc.				

SEMESTER-II

PRACTICALS

Course Code: SIPCHCCP521

Practical Paper I: Inorganic Chemistry Practical

(4L/Week)										
1	Ino	Inorganic Preparations (Synthesis and Characterization)								
	1) Bis-(tetraethylammonium) tetrachloro Cuprate (II) (Et ₄ N) ₂ [CuCl4]									
	2) Bis-(tetraethylammonium) tetrachloro Nickelate (II) (Et ₄ N) ₂ [NiCl ₄]									
	3) Bis-(tetraethylammonium) tetrachloro Cobaltate (II) (Et ₄ N) ₂ [CoCl ₄]									
		(Any two from the above preparations)								
	4)	Tetrammine monocarbanato Cobalt (III) Nitrate [Co(NH ₃) ₄ CO ₃]NO ₃								
	5)	Bis (ethylenediammine) Copper (II) Sulphate [Cu(en) ₂]SO ₄								
	6)	Hydronium dichloro bis(dimethylglyoximato) Cobaltate(III) H[Co(dmgH) ₂ Cl ₂]								
	Ins	trumentation								
	 Determination of equilibrium constant by Slope intercept method for Fe⁺³/ SCN⁻ system. 									
	2) Determination of Electrolytic nature of inorganic compounds by Conductance measurement.									
	Ref	erence:								
	1	Advanced experiments in Inorganic Chemistry., G. N. Mukherjee., 1 st Edn., 2010., U.N. Dhur and Sons Pvt. Ltd								
	2. 7	The Synthesis and Characterization of Inorganic Compounds by William L. Jolly.								
	-	Inorganic Chemistry Practical under UGC Syllabus for M.Sc. in all India Universities By: Dr Deepak Pant.								

SEMESTER-II PRACTICALS

Course Code: SIPCHCCP522

Practical Paper II: Organic Chemistry Practical

CREDITS: 2

	(1P/Week)								
1	Separation of Binary mixture using micro-scale technique								
	1. Separation of binary mixture using physical and chemical methods.								
2. Characterization of one of the components with the help of chemical analysis and confirmation of the structure with the help of derivative preparation and its physical constant.									
	3. Purification and determination of mass and physical constant of the second component.								
	The following types are expected:								
	(i) Water soluble/water insoluble solid and water insoluble solid.								
	(ii) Non-volatile liquid-Non-volatile liquid (chemical separation).								
	(iii) Water insoluble solid-Non-volatile liquid.								
	A minimum of three mixtures from each type and a total of ten mixtures are								
	expected.								
	Reference:								
	1. Systematic Qualitative organic analysis, H. Middleton (Orient Longman)								
	2. A Handbook of Organic Analysis, H.T. Clark (Orient Longman)								
	3. Systematic Identification of organic compounds, R.L. Shriner (John Wiley, New York)								
	4. Practical Organic Chemistry by Mann and Saunders.								
	5. Advance Practical Organic Chemistry, N.K. Vishnoi, Vikas Publication.								

SEMESTER-II

PRACTICALS

Course Code: SIPCHELP521

Practical : Techniques of purification Practical – (DSE)

	(2L/Week)
1	Techniques of Purification
	1. Steam distillation
	2. Vacuum distillation
	3. Column Chromatography
	Learning points: Techniques of purification
	1. Students are expected to perform a purification technique using a known mass or volume of the given substance.
	2. Check the purity of the purified compound by TLC, measure its mass and physical constant.
	Reference:
	1. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis- V.K. Ahluwalia and Renu Aggarwal, Universities Press India Ltd., 2000
	2. Advanced Practical Organic Chemistry – N. K. Vishnoi, Third Addition, Vikas Publishing House PVT I td
	3. Systematic Laboratory Experiments in Organic Synthesis- A. Sethi, New Age
	International Publications
	4. Systematic Identification of Organic compounds, 6th edition, R. L. Shriner, R. C. Fuson and D.Y. Curtin Wiley, New York.
	5. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, ELBS
	6. Experiments and Techniques in Organic Chemistry, D. Pasto, C. Johnson and M. Miller, Prentice Hall
	7. Macro-scale and Micro-scale Organic Experiments, K. L. Williamson, D. C. Heath.
	8. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
	9. Handbook of Organic Analysis- Qualitative and Quantitative, H. Clark, Adward
	 Vogel's Textbook of Practical Organic Chemistry, Fifth edition,2008, B.S.Furniss, A. J.Hannaford, P. W. G. Smith, A. R. Tatchell, Pearson Education.
	11. Laboratory Manual of Organic Chemistry, Fifth edition, R K Bansal, New Age
	Publishers.
	12. Organic structures from spectra, L. D. Field, S. Sternhell, John R. Kalman, Wiley, 4th ed., 2011.

Note:

The candidate is expected to submit a journal certified by the Head of the Department /institution at the time of the practical examination. 2. A candidate will not be allowed to appear for the practical examination unless he/she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost, and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such a certificate. 3. Use of a non-programmable calculator is allowed both at the theory and the practical examination.

Paper No. /Paper Name	Total Credits	Theory Credits	Practical Credits	Internal (Total Marks)	Semester end exam (Total Marks and duration)	Practical (Total Marks and Duration)
Paper I Inorganic Chemistry	6	4	2	40 M	60 M 2h 30 min	50 M 4 hours
Paper II Organic Chemistry	6	4	2	40 M	60 M 2h 30 min	50 M 4 hours
Paper III Physical Chemistry	2	2	Nil	20 M	30 M 1h 15 min	NA
Discipline Specific Elective (DSE) Structural Inorganic Chemistry	4	3	1	25 M	50 M 2 hours	25 M 2 hours
Research Methodology (RM)	4	3	1	25 M	50 M 2 hours	25 M 2 hours

Examination pattern for NEP-compliant MSc semester 1 - 2023-2024

Note:

The candidate is expected to submit a journal certified by the Head of the Department /institution at the time of the practical examination. 2. A candidate will not be allowed to appear for the practical examination unless he/she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost, and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such a certificate. 3. Use of a non-programmable calculator is allowed both at the theory and the practical examination.

Examination pattern for NEP-compliant MSc semester 2 - 2023-2024

Paper Name	Total Credits	Theory Credits	Practical Credits	Internal (Total Marks)	Semester end exam (Total Marks and duration)	Practical (Total Marks and Duration)
Paper I Inorganic Chemistry	6	4	2	40 M	60 M 2h 30 min	50 M 4 hours
Paper II Organic Chemistry	6	4	2	40 M	60 M 2h 30 min	50 M 4 hours
Paper III Physical Chemistry	2	2	Nil	20 M	30 M 1h 15 min	NA
Synthetic Organic Chemistry (DSE)	4	3	1	25 M	50 M 2 hours	25 M 2 hours
On Job Training (OJT)	4	3	1	25 M	50 M 2 hours	25 M 2 hours